Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 11 results ...

Abdalazeem, M E, Hassan, H, Asawa, T and Mahmoud, H (2024) Green roofs and thermal comfort: a comparative study of soil layers’ seasonal thermal performance integrated with ventilation in hot climate. Architectural Engineering and Design Management, 20(02), 358–89.

Altay, B and Salcı, E (2024) Exploring designers’ finishing materials selection for residential interior spaces. Architectural Engineering and Design Management, 20(02), 269–86.

Aslay, S E and Dede, T (2024) Reduce the construction cost of a 7-story RC public building with metaheuristic algorithms. Architectural Engineering and Design Management, 20(02), 214–29.

EL-Mahdy, D and Ali, M (2024) Assessing the solar radiation performance of self-shaded 3D-printed clay-based façades. Architectural Engineering and Design Management, 20(02), 249–68.

Fan, C (2024) Using convolutional neural networks to identify illegal roofs from unmanned aerial vehicle images. Architectural Engineering and Design Management, 20(02), 390–410.

Gokyigit Arpaci, E Y, Eksi Akbulut, D and Yildiz, O (2024) Enhancing water resistance of earthen buildings by using admixture materials. Architectural Engineering and Design Management, 20(02), 320–36.

Pérez-Valcárcel, J, Aragón, J, Muñiz, S, Freire-Tellado, M and Mosquera, E (2024) Transportable temporary homes with folding roof. Architectural Engineering and Design Management, 20(02), 337–57.

Ren, S, Qiang, G, Tang, S, Zhang, C, Seo, H and Wu, K (2024) An automatic design-feedback process for structural prefabricated components quantity take-off calculation using BIM. Architectural Engineering and Design Management, 20(02), 287–302.

  • Type: Journal Article
  • Keywords: Building information modelling; quantity take-off; structural design; automated design-feedback; dynamo;
  • ISBN/ISSN: 1745-2007
  • URL: https://doi.org/10.1080/17452007.2023.2272623
  • Abstract:
    Prefabricated construction is spreading widely for its various advantages like construction efficiency, quality assurance, and environmental protection. However, ensuring project cost-effectiveness under the ever-increasing demands of prefabrication rate requirements has become a challenge. There is a growing need for Quantity Take-off (QTO) feedback on building components for stakeholders in the initial stages of structural design. This paper aims to create an automated design-feedback workflow for the structural QTO using the BIM-assisted visual programming tool Dynamo. The workflow includes model construction, data analysis, unit price data encoding, and design automation. The proposed method demonstrates the pattern of data exchange between stakeholders and is automated by the created visual programming scripts, breaking the original technical limitations, and presenting timely QTO feedback to the clients in a straightforward format. This study contributes to the field of design communication while satisfying the client’s requirements at the structural design stage.

Sohani, H, Hosseini Nourzad, S H and Saghatforoush, E (2024) The optimized form of building made from the reused elements. Architectural Engineering and Design Management, 20(02), 191–213.

Wang, C, Gao, F, Cui, B, Huang, M M, Wu, M, Mao, L and Zheng, A (2024) Geometric quality assessment of precast concrete (PC) elements based on 3D structural light scanning. Architectural Engineering and Design Management, 20(02), 303–19.

Yuan, Z, Wang, H, Yang, Y, Yi, C, Huang, D and Yu, D (2024) Improving the construction accuracy of precast components in prefabricated buildings by analyzing relevant factors from the perspective of supply chain: a system dynamics model. Architectural Engineering and Design Management, 20(02), 230–48.